
High Density Polyethylene Foams. II. Elastic Modulus

Yaolin Zhang, Denis Rodrigue, Abdellatif Ait-Kadi

Department of Chemical Engineering and CERSIM, Laval University, Quebec City, Canada G1K 7P4

Received 18 September 2002; accepted 3 February 2003

ABSTRACT: High density polyethylene (HDPE) foams
(450–950 kg/m3) were prepared by compression molding
and their tensile moduli were measured in order to study
the normalized elastic modulus as a function of the normal-
ized density of closed-cell foams. The tensile data were then
used to compare several models of cellular materials and
polymer composites to determine which would fit our re-
sults. Of all models used, the simple empirical equation of

Moore (square power-law) and the differential scheme pre-
dict the data very well in the range of voids volume fraction
under study (0–55%). © 2003 Wiley Periodicals, Inc. J Appl
Polym Sci 90: 2120–2129, 2003
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INTRODUCTION

It is known that polyolefins are tough, flexible, and
resistant to chemicals and abrasion. Foams made from
these polymers also exhibit these properties. Although
classified as semi-rigid foams, polyolefin foams are
generally firmer than flexible polyurethane foams.1,2

Most polyolefin foams have a closed-cell structure,
which makes them suitable for applications where
buoyancy is important and provides resiliency for use
in packaging applications. In addition, they are used
in construction, transportation, insulation, sports and
leisure, and agriculture.

Many attempts have been made to predict the over-
all mechanical behavior of cellular materials. In gen-
eral, foams can be approximated as a two phase com-
posite materials: a solid matrix enclosing gas “rein-
forcement.” For example, Gibson and Ashby3

developed a model based on unit cells and micro-
mechanical considerations for both open and closed-
cell low density materials. For most high density
foams, Moore4 found that an empirical square power-
law relation is valid. Later, several methods were used
in order to predict the mechanical properties of cellu-
lar materials, most of them being continuum ap-
proaches well known in the mechanics of composite
materials. Hashin5 introduced a model based on a
gradation of sizes of spherical particles embedded in a
continuous matrix for low inclusion concentration.
Later, the development of the self-consistent and the
generalized self-consistent schemes6 for a wide range

of inclusion concentrations was developed (also re-
ferred as the three-phase model). However powerful,
the generalized self-consistent model is difficult to use
because the parameters are rather complex functions
of the inclusion and matrix elastic properties. Later,
Mori and Tanaka7 calculated the effective modulus of
composite materials from the determination of the
average internal stresses in the matrix consisting of
spherical inclusions with determined eigenstrain or
eigenstress, combined with the equivalent inclusion
simplification introduced by Eshelby.8 This approach
was used in several studies related to the determina-
tion of the elastic stiffness of composites, including
studies by Weng and co-workers,9–11 Ju and
Chen,12–15 and Wong.16

Micromechanical analysis of a heterogeneous mate-
rial can determine the overall behavior of a composite
material from the properties of its individual constit-
uents, including interaction, shape, and volume frac-
tion. In the micromechanical approach, the heteroge-
neous microstructure is replaced by a homogeneous
medium with isotropic or anisotropic properties. Since
only the constituent properties are used, this approach
avoids the difficulty of having to evaluate many ma-
terial combinations, which makes it a powerful anal-
ysis that can be used for a variety of materials.

In the first part of this series of articles about poly-
ethylene foams,17 we showed that high density poly-
ethylene (HDPE) foams have a closed-cell structure. It
is thus possible to use the approaches described for
this kind of composite consisting of a polymer matrix
with gas inclusions. Based on the amount of data
available in the literature, several different approaches
were used to approximate the mechanical properties
of polyethylene foams. In this study, HDPE foams
were prepared using a compression molding tech-
nique.17 This article reports the mechanical properties
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of the foams. Comparisons are made among different
models in terms of elastic modulus to determine
which model best fits our measurements.

EXPERIMENTAL

Polymers and sample preparation

Four HDPE foams with different molecular weights
were used in this study. Their suppliers and melt
indices are given in Table I. Foam plates (60 � 60
� 2.8–3.4 mm) were obtained by a compression mold-
ing method. Further details on the molding procedure
and the resulting foam morphology can be obtained
from the first part of this study.17

Tensile measurements

Room-temperature uniaxial tension properties were
evaluated as a function of foam density and molecular
weight using an Instron 5565 tester with a 500 N load
cell. The samples were cut in a type IV format accord-
ing to ASTM D-638. The following conditions were

also used: a temperature of 25°C, an initial length
between the clamps of 25 mm and a crosshead speed
of 10 mm/min. The stress was determined from the
ratio of the tensile load to the initial cross sectional
area and the strain was obtained from the instanta-
neous length and the initial length of the sample. A
minimum of eight specimens were tested for each
condition. In each case, the results are reported as the
average value plus/minus one standard deviation.

Elastic modulus models of two-phase materials

Elastic properties of isotropic materials

For homogeneous and linearly elastic materials, the
constitutive relation that relates stress and strain
through elasticity and/or compliance tensors is given
by Hooke’s law. The general relationship between
stress and strain can be written:18–22

� � C : � or �ij � Cijkl�kl (1)

and

� � D : � or �ij � Dijkl�kl (2)

where � is the stress vector, � is the strain vector, C is
the elastic tensor, and D is the compliance tensor.
Because the stress and strain tensors are symmetrical,
out of the eighty-one components of C or D, only
thirty-six are independent. It is thus convenient to
express the stress-strain relations in terms of a six by
six matrix:

�
�1

�2

�3

�4

�5

�6

� � �
C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212

��
�1

�2

�3

�4

�5

�6

� (3)

in which

�1 � �11, �2 � �22, �3 � �33,
�4 � �23 � �32, �5 � �31 � �13, �6 � �12 � �21

�1 � �11, �2 � �22, �3 � �33,
�4 � 2�23 � 2�32, �5 � 2�31 � 2�13, �6 � 2�12 � 2�21

For isotropic materials, there are only two indepen-
dent elastic parameters. The elasticity tensor becomes

�
�1

�2

�3

�4

�5

�6

� � �
C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0

0 0 0 �C1111 � C1122�/2 0 0
0 0 0 0 �C1111 � C1122�/2 0
0 0 0 0 0 �C1111 � C1122�/2

��
�1

�2

�3

�4

�5

�6

� (4)

TABLE I
Properties of Raw Materials

HDPE Melt index Manufacturer

J60-1700-173 16.0 g/10 min (190°C 2.16 kg) Solvay Polymers
A60-70-162 0.72 g/10 min (190°C 2.16 kg) Solvay Polymers
G60-110 11.0 g/10 min (190°C 21.6 kg) Solvay Polymers
HBW555Ac 5.0 g/10 min (190°C 21.6 kg) Nova Chemicals
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The engineering elastic constants such as bulk (K), shear
(�), tensile moduli (E), and Poisson’s ratio (�) have the
following relationships with the above equation:

E � C1111 �
2C1122

2

C1111 	 C1122
or E �

9K�

3K 	 �
(5)

� �
C1122

C1111 	 C1122
or � �

3K � 2�

2�3K 	 ��
(6)

� �
C1111 � C1122

2 or � �
E

2�1 	 ��
(7)

K �
C1111 	 2C1122

3 or K �
E

3�1 � 2��
(8)

In our case, high density foams can be approximated
as composites constituted by a polymer matrix filled
with gas voids that can be analyzed by micromechani-
cal models.

General equations of composite effective properties

Mori and Tanaka7 introduced the idea of a represen-
tative volume element (RVE), which consists of a uni-
form elastic matrix with elasticity and compliance ten-
sors C and D, containing elastic micro-inclusions con-
sisting of the same material (�) with elasticity and
compliance tensors C1 and D1. The micro-inclusions
are perfectly bonded to the matrix, all constituents of
the RVE are assumed to be linearly elastic, and the
matrix and each inclusion are assumed to be uniform.
The overall elasticity and compliance are denoted by
Cc and Dc, respectively. For constant macro-stress and
micro-inclusions made of the same homogeneous ma-
terials they obtained23

�D � Dc� : �0 � f�D � D1� : �� 1 (9)

where f is the volume fraction of the inclusions and �� 1

is the average stress in the inclusions. For constant
macro-strain with micro-inclusions made of the same
homogeneous material, a similar relationship was ob-
tained:

�C � Cc� : �0 � f�C � C1� : �� I (10)

where �� I isthe inclusions’ average strain.

Voigt model

Voigt24 assumed that the average strain on both inclu-
sion and matrix is equal to the applied strain. The
overall elasticity tensor from eq. (10) becomes

�C � Cc� � f�C � C1� (11)

For foams, the void’s elastic modulus tensor is negli-
gible. This means that C1 3 0 and the foam’s elastic
modulus is reduced to

Cc � �1 � f�C (12)

Young’s modulus it thus given by:

Ef � �1 � f�C1111 �
2��1 � f�C1122�

2

�1 � f�C1111 	 �1 	 f�C1122

� �1 � f�Em (13)

where Ef and Em are the foam and matrix moduli,
respectively.

Modulus models with continuum approach

Because the inclusion’s properties are different from
the polymer matrix, there is a mismatch between ma-
trix and inclusion. In order to account for this mis-
match in material properties, the eigenstrain and ei-
genstress simplifications of Eshelby8 are introduced
for the inclusions and homogenization.

Dilute distribution with constant macro-stress

For a dilute distribution of micro-inclusions embed-
ded in an unbounded homogeneous solid, the inter-
actions between the inclusions and the matrix, as well
as the interactions among inclusions, are not consid-
ered. For spherical micro-inclusions, the elastic mod-
ulus of the composite is23

Kc

K � �1 	 f� K
K � K1 �

1 	 �

3�1 � ���
�1��1

(14)

�c

�
� �1 	 f� �

� � �1 �
2�4 � 5��

15�1 � ���
�1��1

(15)

For foams, eqs. (14) and (15) simplify to

Kf

K � �1 	 f�1 �
1 	 �

3�1 � ���
�1��1

�
2�1 � 2��

2�1 � 2�� 	 3�1 � ��f (16)

�f

�
� �1 	 f�1 �

2�4 � 5��

15�1 � ���
�1��1

�
7 � 5�

7 � 5� 	 15�1 � ��f (17)

Substitution of eqs. (16) and (17) into eqs. (7) and (8)
gives the elastic modulus as
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Ef

E �
2�7 � 5��

2�7 � 5�� 	 3�9 � 4� � 5�2�f (18)

Because this model is based on very low inclusion
concentration ( f 
 1), the overall elastic modulus pre-
dicted by this model is valid only for high density
foams.

Dilute distribution with constant macro-strain

For a dilute distribution of micro-inclusions embed-
ded in an unbounded homogeneous solid, inclusion/
matrix and inclusion/inclusion interactions are not
considered. For spherical micro-inclusions, the elastic
modulus of the composite with constant macro-strain
is23

Kc

K � 1 � f� K
K � K1 �

1 	 �

3�1 � ���
�1

(19)

�c

�
� 1 � f� �

� � �1 �
2�4 � 5��

15�1 � ���
�1

(20)

For foams, eqs. (19) and (20) become

Kf

K � 1 � f�1 �
1 	 �

3�1 � ���
�1

� 1 �
3�1 � ��

2�1 � 2��
f (21)

�f

�
� 1 � f�1 �

2�4 � 5��

15�1 � ���
�1

� 1 �
15�1 � ��

7 � 5�
f (22)

Substitution of eqs. (21) and (22) into eqs. (7) and (8)
gives the elastic modulus as

Ef

E �
1
2

�45�2 	 45 � 90��f2 	 �126� � 51 � 75�2�
f 	 20�2 � 38� 	 14

��12 	 30� 	 15�3 � 33�2�f 	 7 � 19� 	 10�2

(23)

Because this model is based on the dilute inclusion
concentration ( f 
 1), it is valid only for high density
foams.

Self-consistent approximation

For a random distribution of spherical micro-inclu-
sions at higher concentrations, some degree of inter-
action among the inclusions has to be included. The
overall elasticity is now given by23

Kc

K � 1 � f
Kc�K � K1�

K�Kc � K1� � Kc

Kc � K1 �
1 	 �c

3�1 � �c�
��1

(24)

�c

�
� 1 � f

�c�� � �1�

���c � �1� � �c

�c � �1 �
2�4 � 5�c�

15�1 � �c�
��1

(25)

For foams, eqs. (24) and (25) become

Kf

K � 1 � f�1 �
1 	 �f

3�1 � �f���1 � 1 �
3�1 � �f�

2�1 � 2�f�
f (26)

�f

�
� 1 � f�1 �

2�4 � 5�f�

15�1 � �f�
��1

� 1 �
15�1 � �f�

7 � 5�f
f (27)

Substituting eqs. (26) and (27) into eqs. (7) and (8)
gives the elastic modulus of the foams as

Ef

E �
1
2

�8 	 f � 15�f 2 	 3f 2 � 20� 	 37�f 	 �

10 � 7f � 20� 	 13�f 	 2�2f (28)

where

� � � 784 � 3000f 	 400�2 � 7830�f 2 	 4752�f 3 � 1026�f 4 � 1336�2f 	 81�2f 4

� 1473�2f 2 � 630�2f 3 	 5264�f � 1120� 	 4089f 2 � 2394f 3 	 513f 4 �1/2

Mori-Tanaka method for two phase spherical
inclusion composites

Mori and Tanaka7 proposed that the perturbed stress
was in equilibrium with the constrained stress. Based
on the Mori-Tanaka method, Weng9 developed the
normalized modulus for a two phase composite of
spherical inclusions as:

Kc

K � 1 �
3�1 � ���K � K1�f

3�1 � ��K 	 �1 � f��1 	 ���K1 � K�
(29)

�c

�
� 1 �

15�1 � ���� � �1�f
15�1 � ��� 	 �1 � f��8 � 10����1 � ��

(30)

These equations do not consider inclusion interaction
but are similar to the analytical results of Ju and
Chen.13 For foams, eqs. (29) and (30) become

Kf

K � 1 �
3�1 � ��f

3�1 � �� � �1 � f��1 	 ��
(31)
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�f

�
� 1 �

15�1 � ��f
15�1 � �� � �1 � f��8 � 10��

(32)

Substituting eqs. (31) and (32) into eqs. (7) and (8)
gives the elastic modulus of the foams as

Ef

E �
2�7 � 5���1 � f�

�1 	 ���13 � 15��f 	 2�7 � 5��
(33)

Differential scheme for two phase spherical inclusion
composites

McLaughlin25 developed a differential scheme based
on Boucher’s work. Later, Farber and Farris26 devel-
oped a differential scheme using a different approach
but obtained exactly the same differential equations
for the shear and bulk moduli of a two-phase compos-
ite with spherical inclusions:

d�c

df �
15�c�1 � �c��1 � �1/�c�

�7 � 5�c 	 2�4 � 5�c��1/�c	�1 � f� (34)

dKc

df �
K1 � Kc

�1 	 
�K1 � Kc�/�Kc 	 �4/3��c	���1 � f� (35)

These equations constitute a coupled system that can
be solved by numerical methods with the following
boundary conditions:

f � 0, �c � �m (matrix shear modulus)
Kc � Km (matrix bulk modulus)

f � 1, �c � �1 (inclusion shear modulus)
Kc � K1 (inclusion bulk modulus)

For foams, �1 3 0 and K1 3 0. Eqs. (34) and (35)
become

d�f

df �
15�f�1 � �f�

�7 � 5�f��1 � f� �
5�f�3Kf 	 4�f�

�9Kf 	 8�f���1 	 f� (36)

dKf

df �
�Kf


1 � Kf/�Kf 	 �4/3��f	��1 � f� �
Kf�3Kf 	 4�f�

4�f��1 	 f�

(37)

where

f � 0, �f � �m (matrix shear modulus)

Kf � Km (matrix bulk modulus)
f � 1, �f � 0 (voids shear modulus)

Kf � 0 (voids bulk modulus)

To solve the differential system of equations, Euler’s
method was used:27

dy
dt � f�t, y� subject to y � y0 when t � t0 (38)

For each subinterval [ti, ti�1], a small step size (h � ti�1
� ti) is used to discretize the equations:

y�ti�1� � yi 	 �ti�1 � ti�fi (39)

Eqs. (36) and (37) can now be written as

�i�1 � �i 	 �fi�1 � fi�
5�i�3Ki 	 4�i�

�9Ki 	 8�i���1 	 fi�

�0 � fi � 1� (40)

Ki�1 � Ki 	 �fi�1 � fi�
Ki�3Ki 	 4�i�

4�i��1 	 fi�
�0 � fi � 1� (41)

The Young modulus and the Poisson ratio can be
obtained from the shear modulus and the bulk mod-
ulus. Using a small step size (10�5), the Young mod-
ulus was found to follow a power-law relation:

Ef

Em
� �1 � f�n �1.93 � n � 2.01� (42)

where n is the power-law index. The results are pre-
sented in Table II.

Semi-empirical and empirical models for two-phase
composites

Halpin-Tsai model. Halpin and co-workers28–33 evalu-
ated the elastic properties of unidirectional and ran-
domly distributed short fiber composites using Hill’s
generalized self-consistent model. For unidirectional
short fiber composites, the following equations were
obtained:

E11 �
1 	 2�lf/df��Lf

1 � �Lf Em (43)

TABLE II
Relationship Between Power Index of Eq. (42) and Poisson Ratio

�m 0.02 0.06 0.10 0.12 0.16 0.20 0.22 0.26
n 1.94 1.96 1.97 1.98 1.99 2.00 2.00 2.01
�m 0.30 0.32 0.36 0.40 0.42 0.46 0.49 0.495
n 2.01 2.00 2.00 1.98 1.97 1.95 1.93 1.93
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E22 �
1 	 2�Tf
1 � �Tf Em (44)

where E11 is the tensile modulus in the longitudinal
direction, and E22 is the tensile modulus in the trans-
verse direction. The subscript f refers to the fiber
phase, and f is the volume fraction of the fibers. The
other parameters are defined by

�L �
�Ef/Em� � 1

�Ef/Em� 	 2�lf/df�

�T �
�Ef/Em� � 1
�Ef/Em� 	 2

lf/df � fiber aspect ratio

Halpin et al. also developed some semi-empirical
equations for the calculation of the in-plane tensile
modulus of composites containing a two-dimensional
random orientation of short fibers:

Ec �
3
8 E11 	

5
8 E22 (45)

For a three-dimensional random orientation of fibers,
Nielsen and Landel34–35 modified eq. (45) for the ten-
sile modulus as

Ec �
1
5 E11 	

4
5 E22 (46)

Equations (45) and (46) can be used to approximate
the foam’s tensile properties (Ef/Em3 0 and lf/df3 
 :
the aspect ratio) for in-plane randomly distributed
voids as

Ef �
3
8

1 � f

1 	
f

2


Em 	
5
8

1 � f

1 	
f
2

Em (47)

and for three-dimensional foams as

Ef �
1
5

1 � f

1 	
f

2


Em 	
4
5

1 � f

1 	
f
2

Em (48)

If all of the bubbles in the foam are spherical (
 3 1),
eqs. (47) and (48) reduce to the same equation:

Ef

Em
�

1 � f
1 	 0.5f (49)

Kerner model. Kerner36 developed a widely used
model for predicting the mechanical properties of par-

ticle-reinforced composites. The Young modulus was
given as

Ec

Em
�

1 	 ABf
1 � Bf (50)

where

A �
7 � 5vm

8 � 10vm

vm is the Poisson ratio of the matrix and

B �
�Ef/Em� � 1
�Ef/Em� 	 A

Ef is the modulus of the filler. For foams (Ef/Em 3 0)
eq. (50) becomes

Ef

Em
�

1 � f

1 	
8 � 10�m

7 � 5�m
f

(51)

Modified Kerner model. Nielsen34,35,37 modified the
Kerner model as follows:

Ec

Em
�

1 	 ABf
1 � B�f (52)

with

A � kE � 1

where kE is an empirical constant related to the Pois-
son ratio of the matrix35 and

B �
�Ef/Em� � 1
�Ef/Em� 	 A

� 	 1 	
�1 � vfm�f

vfm
2

vfm is related to the inclusion shape and the state of the
inclusion in the matrix.35 For closed and spherical cell
foams (Ef/Em 3 0 and vmf � 0.7405 for face centered
cubic packing), eq. (52) becomes

Ef

Em
�

1 � f

1 	
f

kE � 1 �1 	 0.4732f�
(53)

Moore empirical equation. Moore and Iremonger4 de-
veloped an empirical relationship between the modu-
lus and the density of high density foamed thermo-
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plastics, which can be very closely approximated by a
square power-law relationship:

Ef/Em � ��f/�m�2 (54)

This simple equation has been found to be in agree-
ment for several polymer foams.
Gibson and Ashby model. Gibson and Ashby38 assumed
that a unit cell consists of a cubic array of plates (cell
walls) connected by struts (cell edges) to form a single
cell. They derived the normalized Young modulus of
low density closed-cell foams as

Ef

Em
� �2� �f

�m
� 2

	 �1 � ��
�f

�m
	

p0

Em

1 � 2�f

1 � �f/�m
(55)

where � is the fraction of solid material in the cell
struts and p0 is the internal gas pressure. The foam
modulus is composed of three terms: the first term
gives the contribution of the cell struts, the second
term accounts for the cell walls, and the third term is
the contribution from the internal gas pressure. In
order to predict the normalized modulus, three vari-
ables (�, p0, and �f) need to be determined. Usually,
when the foam is left at atmospheric pressure after
manufacture, the internal gas pressure and the sur-
rounding pressure reach equilibrium. Since the inter-
nal gas pressure is much less than the Young modulus
of the matrix, the third term is negligible. Eq. (55)
becomes

Ef

Em
� �2� �f

�m
� 2

	 �1 � ��
�f

�m
(56)

For this model, the normalized modulus reaches 1 � �
� �2 when the normalized density reaches unity. This
makes Ef less than Em because � is less than 1. Even

though this equation is valid for low density foams, it
will be used to compare with our lower limit of foam
density.

RESULTS AND DISCUSSION

Mechanical properties

The moduli of our foams as a function of foam density
are shown in Figure 1. Because the foam modulus is
related to the modulus of the parent polymer, we use
the normalized modulus (ratio of foam’s modulus to
modulus of unfoamed polymer matrix), and normal-
ized density (ratio of foam density to density of un-
foamed polymer matrix) to analyze the relationship
between modulus and density. This is done to elimi-
nate the effect of the unfoamed polymer matrix on the
foam properties. The normalized modulus as a func-
tion of normalized density is shown in Figure 2. It can
be seen that the normalized modulus exhibits a square
power-law dependence with respect to the normalized
density of the foam.

Comparison of models

All the models described contain simplifying assump-
tions on the structure and the distribution of the in-
clusions that are most likely unrealistic. Their validity
must be judged, at least partially, in terms of how
closely they predict the experimental data between the
relative modulus and density. For the sake of compar-
ison, all calculations have been made using a �m value
of 0.34 for polyethylene.39

Continuum approach

Figure 3 shows a comparison of the normalized mod-
ulus as function of the normalized density using theFigure 1 Foam modulus as a function of foam density.

Figure 2 Normalized modulus as a function of normalized
density. The solid line traces the square power-law.
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continuum approach. The Mori-Tanaka model and the
differential scheme show good agreement with the
experimental data. The macro-stress model is based
on a constant macro-stress, which is not the case in our
study because the measurements were performed un-
der tension at a constant strain rate. Furthermore, this
model is valid only for very low inclusion concentra-
tion. This is why the predictions of the model are not
in agreement with the experimental data even at a
very low inclusion concentration (higher foam densi-
ty). The constant macro-strain model does not con-
sider the matrix/inclusion interactions. It does how-
ever do a better job at very low inclusion concentra-
tions, but the normalized elastic modulus becomes
negative at f � 0.323, which is clearly impossible. Even
though the self-consistent model considers some ma-
trix/inclusion interaction, it still does not consider the
inclusion/inclusion interaction. However, the effect of
inclusion interaction is important only at high inclu-
sion concentrations. From these results, we can con-
clude that the constant macro-strain model and the
self-consistent model could be used at very low inclu-
sion concentrations ( f 
 10%). The average deviations
of the predictions were found to be 9.4% and 7.9% for
the Mori-Tanaka model and the differential scheme
that considers the change in the overall modulus when
a small amount of the inclusion is introduced in the
system. However, the Mori-Tanaka model does not
consider the interactions among inclusions. This could
be the reason Mori-Tanaka overestimates the normal-
ized modulus at high inclusion concentrations. There-
fore the differential scheme seems best to predict the
foam behavior over the range of inclusion concentra-
tions studied.

Semi-empirical approach

Figure 4 compares the normalized modulus as func-
tion of the normalized density of the semi-empirical
models. It can be seen that these models do not pro-
duce good agreement. Among them, the Kerner model
gives the most reasonable prediction, even though this
model still overestimates the elastic modulus when
the inclusion volume fraction is larger than 20%. The
average deviations were found to be 21%, 12%, and
35% for the Halpin-Tsai, Kerner, and modified Kerner
models, respectively. Halpin-Tsai developed a model
for discontinued oriented fiber composites and an em-
pirical equation for an in-plane random distribution.
The inclusion shape and properties affect the final
moduli of the composites. In this model, the shape of
the inclusion is cylindrical, but the shape for our
closed cell foam is mostly spherical. This explains why
the Kerner model gives a more reasonable prediction
than the Halpin-Tsai model. The modified Kerner
model considers a particle state (aggregation or not),
which is not the case for our closed-cell foams. If two
cells come in contact, they could coalesce to become a
larger void during foaming. This model thus under-
estimates the modulus of the composites for all inclu-
sion concentration.5

Other models

Figure 5 compares the predictions from the other
models discussed. For the Gibson-Ashby model, one
needs to determine the value of �. In their book,38 the
value of � for polyurethane is around 0.8–0.9. Closed-
cell foams usually have similar morphological struc-
tures. In our case, a value of 0.85 is used for �. Because
the Gibson-Ashby model was developed for low den-

Figure 3 Comparison of normalized modulus as a function
of normalized density for the continuum approach. Lines
show predictions of different models: (– � – � –) constant
macro-stress, (– � � – � � –) Mori-Tanaka model, (———) dif-
ferential scheme, (– – –) self-consistent model, (- - - - - - - -)
constant macro-strain.

Figure 4 Comparison of normalized modulus as a function
of normalized density for semi-empirical models. Lines
show predictions of different models: (– � – � –) Halpin-Tsai,
(———) Kerner, (– – – –) modified Kerner models.
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sity foams, this model will be in error when applied to
high density foams. Using this model, the normalized
modulus does not reach unity when the void fraction
reaches zero, but the model gives reasonable predic-
tions at higher void fractions ( f � 0.4). From Figure 5,
we can see that the Voigt model, which represents the
simple linear law of mixture, substantially overesti-
mates the elastic modulus. On the other hand, the
experimental data are in good agreement with the
predictions of Moore’s empirical model. The average
deviations are 39%, 13%, and 7.9% for the Voigt, Gib-
son-Ashby, and Moore empirical models, respectively.
This means that Moore’s empirical model seems to
work best in our case. The following section compares
the models that gave the best predictions for our
HDPE foams.

Best models

Figure 6 compares the models that gave the most
reasonable predictions. The average deviations of the
predictions were found to be 12%, 7.9%, and 7.9% for
Kerner’s model, the differential scheme, and Moore’s
empirical model, respectively. We could not differen-
tiate between the differential scheme and Moore’s em-
pirical model, so both are believed to be equal. Nev-
ertheless, from the trend observed in the curves, we
expect that Kerner’s model will not give good results
at void fractions higher than the ones studied here.

CONCLUSIONS

Even though several mechanical models are available
to predict the properties of two phase materials, most
of them were found to be inapplicable to polymer
foamed materials. The question of which model is best

to predict the properties of foamed polymers over a
wide range of void fractions thus arises.

Using our measurements, several very well known
models were compared. The Voigt model, which is
actually the linear law of mixture for composites, was
not valid in our case for all void volume fractions. The
constant macro-stress model was not suitable in our
case because our measurements were made using a
constant strain rate. The constant macro-strain and the
self-consistent models are valid only at very low void
volume fractions (less than 0.1) because of the simpli-
fications made in their development. The Kerner and
the Mori-Tanaka models have similar limitations. The
Halpin-Tsai model overestimates the modulus, while
the modified Kerner model underestimates the mod-
ulus for all void fractions. Finally, the Gibson-Ashby
model seems to give reasonable predictions only for
very high void fractions ( f � 0.4).

Of all models tested, it was found that the differen-
tial scheme and Moore’s empirical square power-law
were the best models to approximate the tensile mod-
uli of our closed-cell HDPE foams. Each one gave
similar results that could not be differentiated, their
average deviation being 7.9%.
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Figure 5 Comparison of normalized modulus as a function
of normalized density for general models. Lines show pre-
dictions of different models: (– � – � –) Voigt, (- - - - - - - -)
Gibson-Ashby, (———) Moore.

Figure 6 Comparison of normalized modulus as a function
of normalized density for the best models. Lines show pre-
dictions of different models: (– – – –) Kerner, (———) differ-
ential scheme and Moore’s empirical model.
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